
NASA Technical Memo_r_and_.ura__._!_.04_446 //v
/_' _/._

_o

Parallel Computing Using a
Lagrangian Formulation

(NASA-TM-I0444o) PARALLEL CuMPUTTNG USING A

LAGRANGIAN FO_,MULATION (NASA) 20 oCSCL I2A

G3159

Nq,I- 24 l-c5 : :
i

Unclds
0014927

May-Fun Liou and Ching Yuen Loh
Lewis Research Center

Cleveland, Ohio

Prepared for the
Parallel CFD Conference

cosponsored by CONVEX, CRAY, debis, GAMNI'SMAI, IBM, INTEL, NASA,

nCUBE, siemerLs.TNix_d_o_ff, and Thinking Machines __

Stuttgart, Germany, June 10-12, 1991

NASA

Parallel Computing Using a Lagranglan Formulation

May-Fun Liou and Ching Yuen Loh*

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Abstract

This paper adopts a new Lagrangian formulation of the Euler equation for the

calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the

inherent parallelism of the flow field better than the common Eulerian formulation

and offers a competitive alternative on parallel computers. The implementation of the

Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is

described. The program uses a finite volume, first-order Godunov scheme and exhibits

high accuracy in dealing with multidimensional discontinuities (slip-line and shock).

By using this formulation, we have achieved better than six times speed-up on a 8192-

processor CM-2 over a single processor of a CRAY-2. ""

1. Introduction

For decades, CFD has been showing increasing value in the studies of basic fluid

mechanics as well as in aircraft design. At the same time, purely experimental ap-

proaches have become very costly. In some cases (e.g. hypersonic flight vehicles),

experimental requirements go beyond the capability of the existing wind tunnels. It

°, *National Research Council - NASA Research Associate at Lewis Research Center.

is generally agreed that orders of magnitude improvement in computer performance

will be required to utilize CFD as a design tool for future aerospace vehicles. But

the performance of vector supercomputers has been approaching a plateau. Conse-

quently, parallelism in computer architecture has been sou_t as a viable alternative

for delivering the needed high speed performance.

To this end, considerable research and resources have been directed to take advan-

tage of the raw power of the parallel computer. Two different approaches can be taken.

The 6rst one is to suitably (optimally) break a large system into many smaller sub-

systems (e.g. domain decomposition), so that maximum parallelism can be realized.

This approach has been the primary focus of past and current research [3]. The second

approach is to choose (devise) a formulation (set of equations) that is most suitable

for parallel computing. An example in CFD is the Lagrangian formulation. Since the

Eulerian formulation does not entail following the streamlines, the convective velocity

will cross the cell boundary and result in the transfer of mass, momenta, and total

enthalpy between cells. In other words, in addition to the pressure wave interaction

at the cell boundary, there is also a cross communication via the convective fluxes in

the Eulerian approach. To minimize the cross communication, a better choice is to

take advantage of the inherent parallel property of the streamlines by adopting the

Lagrangiau approach. Thus, the Lagrangian approach reduces numerical operations of

fluxes across the boundary of cells and gives rise to much more crisp solution because of

eliminating the numerical mixing of fluids. This is the approach adopted in the present

research and this paper will detail the formulation, its parallel implementation, and

the resulting benefit in accuracy and solution speed.

In supersonic flow, the steady Euler equations are of hyperbolic type and a "time-

like" variable can be used to reduce the number of independent variables by one. By

further combining the Lngranglan concept, where a _time-l_e" variable is defined to be

along the streamline, a 2-D steady supersonic/hypersonic flow problem is reduced to

that of 1-D unsteady flow. There are two important characteristics in the Lagrangian

formulation. First, it results in higher accuracy in dealing with multidimensional dis-

continuity (slip-line and shock), as demonstrated by Lob and Hui [1,2]. The other

characteristic of the Lagrangian formulation is the embedded parallelism. This is due

to the fact that we can compute each streamline independently with only the pres-

sure wave interacting between streamlines. To implement the Lagraugian formulation

on the Thinking Machines Corporation CM-2 computer, the numerical procedure is

programmed in CM FORTRAN. Several Riemaun problems in different configurations

are computed and compared with exact solutions.

2. The New Lagrangian Formulation of Euler Equations

It is well known that there exists two basic methods of specifying fluid motion

: the Eulerian and the Lagrangian. One dimensional unsteady flow and problems of

free boundaries composed of the same set of fluid particles are often studied using the

Lagran_an formulation. However, most of the theoretical and numerical studies of

fluid are based on the Eulerian formulation. In particular, the Eulerian formulation

is usually prefered for 3-D steady flow problems because the number of independent

variables is reduced from four to three. The conventional Lagrangian formulation still

requires four independent variables for 3-D steady flows.

Hui and Van Roessel [4] have introduced a Lngrangiau time, _" which plays a

dual role (i.e. both a fluid particle label and a measure of time). In this way the

number of independent variables for 3-D steady flow is also reduced from four to

three, placing the Lagrangian formulation on the same ground as the Eulerian one for

steady flow. Thus, for two-dimensional steady flow the independent variables are the

stream function _ and the "Lagrangian time" r . The conservation form, based on

this variable transformation, is given as follows [1]:

0E 0F

o-7+ = o (1)

with

where

/.,/r /.. /0/oE = e3 Ku + pV F =

ese' =_KVuPU '
ee

v=a--
are the geometrical quantities representing fluid particle deformation during marching

forward. The variable

K = p(uV - vU) (2)

is the mass flux and H is the total enthalpy per unit mass,

H = _(_ + _)+ _ p (3)'7-1p

where p, p are the pressure and density respectively. The first four equations in (1) rep-

resent the physical conservation laws of mass, energy and momentum respectively. The

last two equations arise from the compatibility condition between the w- derivatives

and the _- derivatives, representing the deformation of a fluid particle.

In the new Lagrangian formulation the coordinate lines are the streamlines and

time lines. Consequently, the flow tangency condition on a solid boundary is satisfied

exactly on a coordinate line (e.g. _ - _0). We further remark that since slip lines are

also streamlines, they must be coordinate lines.

To find a steady flow solution, we need to solve equation (1) subject to the flow

tangency condition on the solid boundaries, as prescribed, or free stream condition, as

given, and the Rankine-Hugoniot jump conditions across a shock.

3. Godunov Scheme

For supersonic/hypersonic flow, the system of equations (1) is of hyperbolic type.

4

As indicated by Ortega and Voigt [5], explidt methods tend to be more attractive

on parallel computers than on serial computers for solving hyperbolic type equations.

However, the explicit methods are constrained by stringent stability requirements.

Other considerations when selecting a numerical method for parallel ccmputing include

the computer architecture, inter-processor communication, the boundary condRions,

the form of the coef_cients, and the number of space dlm_ons, etc. Based on

these considerations, we believe that the explidt scheme is more appropriate for our

formulation and for the massively parallel computer which we are using. We apply the

standard first-order Godunov scheme in a manner similar to that for one-dimensional

unsteady flow. The computational domain in the r-_ plane is illustrated in Pig. I with

superscript n refering to t.he time step number and subscript j as the cell number. The

marching step, Ar n - r "_1 - r n is chosen to satisfy the CFL stability condition. The

mesh divides the computational domain into control volumes or cells with center at

(r n, _j) and height of A_j = _j+1/2 - _j-1/2 in the _-direction. The procedures of

solving (1) by the Godunov scheme have been described in detail in [1]. Here, to avoid

repetition, we shall only give a brief description.

After integrating eq.(1) over the shaded rectangle in Figure 1 and applying the

divergence theorem, the difference equations for the jts cell at time step n are

• = - _-_+1/2 --_-1/2J (4)

and Arn = r n+l -- _.n is the time step size. For r = r n the flowwhere _ -- _r-'-_
hi '

variables Q - (p,p,u, v) and geometric quantities (U, V) are assumed to be given

and constant within each cell j, denoted as Qi, _i and _. A sequence of Riemann

problems with initial data:

j = 1,2,...,N'- I. (5)
f Qj+I,

Q =
(Qi,

are solved to determine the interaction between flows in adjacent cells and subsequently

the interface fluxes ,, _+]/_ at the cell interfaces.

5

The solution to the Riemann problem yields a flow consisting of the Prandtl-

Meyerexpansion,oblique shock,and slip line. A Newton iterative method is employed

for solving the Riemann problem.

If there is a solid boundary, the boundary Riemann solver is employed. Details

about the boundary Riemann solver are described in [1]. If there is any slope disconti-

nuity at the solid boundary, the same special treatments as described in [1] are applied

to minimize numerical errors. As a matter of fact, these special treatments amount to

applying a local exact solution at the sudden turns of the solid body surface.

4. Massively Parallel Computer

Researchers are now finding that many problems in nature, human society, science,

and engineering are naturally parallel, and can be effectively solved by using math-

ematical and computational methods that work in parallel. Therefore if a computer

Ulooks" like the problems and can exhibit thousands degrees of parallelism, we should

be able to solve those computation-intensive problems on such a computer and achieve

a rapid speedup, relative to a -niprocessor. As a result, we are now experiencing a

paradigm shift (i.e. a shift from sequential to massively parallel computing).

The most massively parallel computer built so far is the Thinking Machines Cor-

poration's Connection machine. The Connection machine is of the SIMD (Single In-

struction, Multiple Data path) type. The current model CM-2 contains up to 65,536

physical processors (64K) in blocks of 8K(where K stands for 1024) and has a peak

speed of approximately 5 GFLOPS (64-bit precision) [6]. Each processor has its own

local memory of 8192 32-bit words. In addition, every 32 processor share a floating

accelerator chip. Thus, a 64K CM-2 has 2048 floating chips. Parallel data sets are

spread across the processors, with one single parallel data element stored in each pro-

cessor's memory. When the number of parallel data elements exceeds the number of

physical processors,the hardware operatesin the virtual processormode by splitting

eachprocessorinto several equal subprocessors to generate more prosessors, each with

correspondingly smaller memory. The ratio of virtual to physical processors is known

as the virtual-processor ratio (VP ratio). The CM-2 processors all operate in lockstep

on data stored in their local memories and execuate a single stream of instructions.

The instruction is directed down from a front-end computer which can be a VAX, a

Symbolics, or a SUN/4. And the system can connect up to four front-end computers.

The CM-2 system software is designed to utilize the existing programming lan-

guages and environments as much as possible. Parallel versions of LISP, C, and FOR-

TRAN are available. PARIS is a low-level instruction set that provides a facility to

optimize the execution speed of critical parts of a program. The parallel version of

FORTRAN (CM FORTRAN), which incorporates the proposed FORTRAN 8X array

extension into the ANSI FORTRAN 77 standard, is employed in this research.

Another feature of the CM-2 system is the interprocessor communication mecha-

nism. There is a dynamical router mechanism. That allows any processor to commu-

nicate in parallel to any other processor. There is also a NEWS grid which is a more

structured local communication mechanism, and it allows processors to pass data in

parallel in a circular multidimensional pattern. The average time to send data through

the router is equivalent to 60 integer-add operations while it takes about 6 integer-add

operations to communicate with an adjacent processor by NEWS grid [7].

5. Computational Performance and Test Problems

The Lagrangian method is tested on the Thinking Machines Corporation CM-2.

The numerical results of several test problems are compared with the available exact

solutions to demonstrate the accuracy. The efficiency of this approach is presented

by the performance comparisons between the sequential and parallel computing. The

7

serial version of the same Lagrangian formulation is vectorized and run on a single

processor of a CRAY-2. The parallel version has been run on the 8K machine with

64-bit floating point hardware.

XeauZ_,(.county)

Based on a detailed comparison of the distribution of all flow variables, the re-

sults from the CM-2 parallel version are identical, as they should be, to that of the

vectorized serial version on the CRAY-2. The first example is a pure initial value

problem, namely a Riemann problem. The top and bottom states are shown in Figure

2. The ratio in pressure, density, and Mach number across the two streams is 4, 2,

and _ respectively. The resulting interaction between the top and bottom streams

produces an oblique shock in the low-pressure stream and a PrandtbMeyer expansion

on the high-pressure stream side. Obvionsly, the numerical results agree well with

the exact solution (solid lines) for the slip line and shock wave. Especially, the slip

line is resolved with essentially no intermediate points, reflecting the strength of the

Lagrangian formulation. On the other hand, the Euhrian formulation will resolve the

slip line typically in 5-6 points. Also, the shock resolution is slightly better than the

Euhrian calculation for the _st-order results, but significantly better for the second-

order results (not shown in this paper). The accuracy for the expansion fan is about

the same as that of the Eulerian results.

The next example is an initial-boundary value problem. Two shocks are generated

at the slope discontinuity on both the upper and lower wall in a converging channel.

Subsequently, the shocks coUide with each other, resulting in two new shocks and a

slip line between them. The upper and the lower wall wedge angies are 10 ° and 20 °

respectivdy. The flow variables of the incoming free stream are:

p=2, p=l, u=13.1483, v=O

Special treatments at the sudden body turns, as decribed in [1], are applied to reduce

the local numerical errors. Figure 3 (a) and (b) illustrate the pressure and density along

8

a typical time line after the shock collision (the line B - B_), with the exact solutions

represented by solid line. The exact solution to this problem is obtained from the

oblique shock theory which predicts the strength and location of these induced shocks.

The numerical results agree well with the exact solutions, the shocks are seen to be

resolved in 4-5 points and the slip line in 2 points.

cpu ti_e (e_cle_c_)

To utilize CM-2 to its maximum efllciency, there are two general rules [7] to follow.

First, avoid too many processors sitting idle. Since CM-2 is a SIMD type machine, it

takes the same amount of time to perform operations either for a single grid or for the

entire grids (i.e. try to use all processors simultaneously). Second, the communication

through the general purpose communication network (router) is very slow and should

be minimized. Following these two rules, we let all the fluid cells, with each processor

representing one cell, on the same time line (_') march forward simultaneously. In

addition, the communication in our program is limited to the nearest neighbor cells

due to the numerical scheme we adopt (i.e. omitting the useage of costly router but still

achieving high accuracy). However, treating the boundary points separately results in

the decrease of the CM-2 ei_ciency and is inevitable.

A built-in facility, called the Paris timer, in CM-2 is used to measure both the total

elapsed time and the time during which the CM was active. The UNIX f_ont-end has

some degree of multiprocessing activity which results in interference between processes

even when only one user is logged in. Such interference can lead to timing distortion

introduced by other processes. Another factor affecting the accuracy of timing is that

the UNIX real time clock has lower resolution than the CM cycle time. To be more

accurate in timing, we run each case three times and report the average of those three

v_lues.

The following timings are based on the overall time for a run, including both exe-

cution time on the front-end and the CM-2. Execution on the front end consists of the

following operations: reading the input, writing the output, doing scalar calculations,

setting the logical masks, and transferring arrays to the CM-2. The overhead due to

the front end operation can weaken the CM-2 performance and is a function of n, the

size of problem. The comparison of overall performance of parallel and serial versions

is obtained for three situations: (1) the "embarrassingly parallel" situation, where the

size of the problem, n, is very much less than the number of processors, p; (2) the

problem's size is equal to the number of processors, n = p; and (3) the large problem

whose size n >> p. Because of the structure of the CM-2, the problem size has to

be dimensionalized to match the number of available virtual processors. For example,

the grid of 60 K points will run as long as a grid of 64 K points. Furthermore, the

higher the VP ratio the better. Since the grid is automatically generated as a part

of the solution, we like to point out that the execution time we are discussing above

includes the time spent on grid generation too.

Figure 4 shows the overall performance as a function of the number of cells in

the flow field of the initial value Riemann problem. Cpu times are shown for the

CRAY-2, CM-2 only, and CM-2 plus front end. The horizonal axis represents the

total number of cells along the _ direction while the vertical one denotes the cpu

seconds. The curve of the CM-2 performance (dashed line) is in steps distribution and

is function of the number of available virtual processors only. The solid line represents

the performance of the sequential computation on a single processor of CRAY-2. The

overall performance denoted by the symbol A shows the deviation from the ideal CM-2

distribution because of the overhead from the front end. Similarily, Fig. 5 presents the

performance comparison between the CRA¥-2 and CM-2 for the converging channel

flow. A substantial decrease in the performance etBciency of the CM-2 is noticed. Since

this test case needs more numerical operations in handling the boundary condition,

Fig. 5 shows that the execution time spent on the CM-2 processors dominates and

weakens the overall performance. The effect played by the boundary conditions on the

CM-2 is explained in the following.

As we mentioned previously, the computation of boundary points is a source of

10

computational inefficiencies on the CM-2. Many processors, assigned to interior points,

are sitting idle while some processors execute operands of boundary conditions. At the

boundary of interest, preset masks are employed to design specific boundary condition.

The mask is a logical array of bits, each bit associated with a single processor, whose

context (false or true) determines whether or not the result of the operation of the

processor is actually used.

There are two types of boundary : free boundary and wall boundary. Case 1 in

our testing is a free boundary problem to which we apply the zero gradient condition at

the far field boundaries. In CM-FORTRAN an intrinsic function CSHIFT which is the

circular shift of the data in the specified array along a spedfied axis of the array for a

specified displacement handles this kind of boundary (i.e. extrapolation from interior

point) easily. As wall boundary is concerned, such as the case 2, the velocity normal to

the wall is zero and the body surface is one of the streamlines. Also special treatments

are employed to impose exact solution locally around the sudden turn of boundary[I].

Case 2 is an example of the more complicated boundary condition we will encounter in

the applications of Lagrangian formulation. The relative performance of two different

types of boundary condition is shown in Fig. 6. It indicates that both case 1 and 2

have the same degree of computatioal intensity on the CRAY-2. Due to the special

treatments along the boundaries, we observe that there is approximately 2.4 times cost

of cpu seconds on CM-2 for the converging channel (initial-boundary value problem)

over the Riemann problem (initial value problem). Though Fig. 5 indicates that the

CM-2 still outperforms the CRAY-2 for the more complicated boundary condition as

the case of converging channel, minimizing the inefficiency caused by boundaries will

be undertaken in the future.

Tables 1 and 2 display the relative performance in terms of the overall elpu time

per cell with respect to VP ratio. Item epu ratio/cell represents the ratio of the cpu

time spent on the 8K CM-2 to the time on a single processor of the CRAY-2 for each

cell. And the CM utilization indicates how efllciently the CM processors are utilized.

11

It is calculated as the percentage of the CM-2 executing time over the elapsed real

time. Using the formulation and procedures described in this paper, we achieve the

speed-up approximately 2 to 7 times faster for the problems/conditions studied. Thus,

the expectation of the inherent parallelism existing in this Lagraugian formulation has

been confmned.

6. Conclusions

The inherent parallelism that exists explidtly in the Lagrangian formulation has

been exploited on a massively parallel computer. The parallel processing of this La-

grangian formulation has shown its good efficiency and offers an alternative to the

conventional Eulerian formulation; the best performance on a 8192-processor CM-2

machine was shown to be approximately seven times over that of a single processor

CRAY-2. In this formulation the grid is automatically generated to follow the stream-

lines, as a part of the solution. In addition, it achieves higher accuracy than the

Eulerian formulation.

It is suggested that using the combination of the Lagrangian formulation and the

massively parallel computer should result in efficient calculations of those computation-

intensive problems with complex configurations. Thus, a 3-D viscous code based on

this research will be developed to deal with those computation-intensive problems,

including the real gas calculation for hypersonic problems. Furthermore, the imple-

mentation of this Lagrangian formulation on a MIMD machine (i.e. iPSC/860) will

be investigated.

References

L ° .:

1. C.Y. Loh and W.H. Hui, "A new Lagrangian method for steady supersonic flow

12

computation Part I: Godunov scheme," J. Comput. Phlls. 89(1990).

2. C.Y. Loh and W.H. Hui, "A new Lsgrangian Random Choice method for Solving

the Steady Euler Equations," submitted to SIAM J. of Scientific end Statistical

Computing.

3. U. Schnendel, Introduction to Numerical Methods .[or Parellel Computer,, B. W.

ConoUy, Trans., Halsted Press, New York (1984).

4. H. J. Van Roessel and W. H. Hui, "A New Lagrangian Formulation for Steady

Three Dimensional Hypersonic Flow," J'. Appl. Math. Phys. 40(1989).

5. J. M. Ortega and R. G. Voigt, Solution of Partial Differential Equation8 on eector

and parallel Computerj , SIAM, Philadelphia (1985).

6. "Connection Machine Model CM-2," Thinking Machines Technical Report HA87-

4, Thinking Machine Corp., Cambridge, Mass., 1987.

7. B. E. Wake and T. A. Egolf, "Implementation of a Rotary-Wing Navier-Stokes

Solver on a massively Parallel Computer," AIAA J. 29 (1991).

CM-2

cpu ratio/cell 0.145 0.154 0.25 0.265

CM utilization 71% 62% 58% 31%

VP* ratio 16 8 4 2

* VP: virtual processor

Cray-2

1

N/A

Table I. Performance comparison for Riemann problem

[
cpu ratio/cell 0.24
CM utilization 92%

_VP* ratio 16

* VP: virtual processor

CM-2

0.27 0.30

86% 79%

8 4

Oray-2

0.51 I

54% N/x
2

Table 2. Performance comparison for converging channel

13

time lines

amlin _ 1

- I
!

v

v

T

¢#'q¢¢1

Physical plane Computational plane

Cell j

boundary {cell j= 1

Tn+l
_7 n

t

hj
t

T

Fig. 1. Computational Domain and Mesh

14

120

1.08

096,

OIN

0.72

P
m_ew 060.

0.d

0.38

0.24

0.12

' A
J shock

..................... H = 4 0 ,_ o"'slip line

' oo

, L.....................A

O.OO I
I I '1 'l l'" ! ! • I --

000 010 020 030 040 050 0.60 0.70 0JI0 0.90

distance y along time llne

o 84

0.72

--P--- o6o
Pnl4m

0All

0.36

0,24

0 12

OO0

1,20 1

'"]A'

096 _-'-:'-'-:'-";'_-'-_;-_';;-;_U_

P

o A

' I 1 z = I I 1" # ' '1

oc_ ozo o_ o3o 040 oso 050 070 o so ooo

distance y along time llne

(b)

Fig. 2. Flow variables vs. normalized Eulerian coordinate y along
time line A-A' (_-=.125). Solid line denotes the exact solution

15

P

Pm,g

1 20

ogo

030

000

000

I0o
.... B

20 °

0

_' _°

O.25 O.5O 0.7$

distance y along time line

B

i

1.00

(a)

1.2

Pmlg

0 .25 .5'0 .75 1.0

distance y along time line

Co)

Fig. 3. Flow variables vs. normalized Eulerian coordinate y along

time line B-B'. Solid llne denotes the exact solution

16

0

I t-l-t

1 31

i C!0

/

A

/

/

/
/

i A A

CRAY-2
CM-2 only

overall performance of
CM-2 plus front-end

//

//

A
/

A _---
I

I

I

,%-i , , ilIIll I t I IIIlt_ t I I lllJi

i O" 1 0 4 I 0 5 10 6

A:o. of cells

Fig. 4 Performance comparison for Riemann problem

v

- CRAY-2
CM-2 only

5 overall performance of
CM-2 plus front-end

/

/ (-- -

/
/

F-----

,/" ti_

" '-'__ !-"L" _.0 5 1 0 e

5,:o. of cells

Fig. 5 Performance comparkon for converging ©hannel

17

ORIGIN_,L PAGE IS

OF POOR _JALITY

E*

"4

1,rv

- Converging channel

/
//

Riemann
/

/
/

/

CRAY-2/--/ I-

f/ ;

//

/

.... i

problem

CM-2 only

,. ---', _ _ iil] i I i i i [Ii I l [_ I l;

! ,C_Z t 0 4 10 5 10 6

No. of cells

Fig. 6 Performance comparion for different problems/condltions

T

eF Pc_a_ _j_

18 ""

NhSA
NatiomdAero,'mue¢=Ind
SlmoeAdmlnle_'a_on

1. Report No.

NASA TM- 104446

4. Title and Subtitle

Report Documentation Page

2. Govemment _ No. 3. Redplent'sCatalogNo.

S. ReportData

Parallel Computing Using a Lagrangian Formulation

7. Author(,,)

May-Fun Liou and Ching Yuen Loh

i

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135 - 3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

e. Pedorm_ng Organization Code

8. PIdotming Or_zatJon Report No.

E- 6286

10. Work Unit No.

505- 62- 52

11. Contract or Grant No.

13. Type o4 Report _xI Period Covered

Technical Memorandum

14, Sponsoring Agency Code

15. Supplementary Notes

Prepared for the Parallel CFD Conference cosponsored by CONVEX, CRAY, debis, GAMNI-SMAI, IBM, INTEL,
NASA, nCUBE, Siemens-Nixdorf, and Thinking Machines, Stuttgart, Germany, June 10-12, 1991. May-Fun Lion,
NASA Lewis Research Center. Ching Yuen Lob, National Research Council-NASA Research Associate at Lewis

Research Center. Responsible person, May-Fun Liou, (216) 433:3600.

16. Abstract

This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of 2-D supersonic steady

flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common
Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrang-

ian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite
volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities

(slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-

processor CM-2 over a single processor of a CRAY-2.

18. Dis_bution Statement

Unclassified - Unlimited

Subject Category 59

20. Secudty Clmif. (of this paQe)

Unclassified

17. Key Words (Suggested by Author(s))

Computational Fluid dynamics
Euler- Lagrange

Parallel processing (computers)
SIMD (computers)

19. Secudty Clauif. (of the repod) 21. No. of pages

Unclassified 20

NASA FORM l12e OCT e6
*For sale by the National Technical Information Service, Springfield, Virginia 22161

22 Price"

A03

PRECEDING PAGE BLANK NOT FILMED

